

Singularities of particle trajectory caustics and beam shaping in bunch compressors

Tessa Charles

tessa.charles@cern.ch

Rohan Dowd, David Paganin, Andrea Latina, Mark Boland

Caustics

Caustics

Optical caustics:

$\frac{1}{\frac{1}{x^{1/2}}}$

Electron trajectories caustics:

These current horns are a manifestation of the caustic nature of the electron trajectories, as singularities of families of trajectories are encountered.

26/09/17

Tessa Charles – NOCE2017

Caustics / Catastrophe theory

Image: EC Zeeman (1976) Catastrophe Theory in Scientific American.

26/09/17

Current horns

• Current horns are resultant from caustics

Caustic expression

• Expression for caustics:

$$\tilde{z}(z_i) = z_i + \frac{\delta(z_i)(-1 + T_{566}(-2 + \delta(z_i))\delta'(z_i) + U_{5666}(-3 + \delta(z_i)^2)\delta'(z_i))}{\delta'(z_i)}$$
$$\tilde{R_{56}}(z_i) = \frac{-1 - 2T_{566}\delta'(z_i) - 3U_{5666}\delta'(z_i)}{\delta'(z_i)}$$

Initial longitudinal phase space distribution:

T. K. Charles et al. (2016) Phys. Rev. AB, **19**, 104402

Caustic expression

Comparison with simulations

Tessa Charles – NOCE2017

Comparison with simulations

ELEGANT simulation results:

Single-horn current profile produced with $R_{56} = -10.82$ mm, $T_{566} = -41.07$ mm and $U_{5666} = 0.40$ m

Comparison with simulations

ELEGANT simulation results:

Current profile produced with $R_{56} = -11.76 \text{ mm}$, $T_{566} = 16.10 \text{ mm}$ and $U_{5666} = 2.60 \text{ m}$.

A closer look...

Can we avoid caustic current horns?

Caustics condition:

$$R_{56}s\frac{d(\delta(z))}{dz}\Big|_{z=z_i} + T_{566}s\frac{d}{dz}\left(\delta^2(z)\right)\Big|_{z=z_i} + U_{5666}s\frac{d}{dz}\left(\delta^3(z)\right)\Big|_{z=z_i} + s_{BC} = 0.$$

where,

 δ = energy spread z_i = initial longitudinal position s = position along accelerator s_{BC} = end of bunch compressor position

T. K. Charles et al. (2017) Phys. Rev. AB, 30, 030705

Avoiding caustics

26/09/17

Boundaries between caustic regions in Australian in Austra

The border between the caustic regions is defined by the set of variables, $(R_{56}, T_{566}, U_{5666}, h_1, h_2, h_3)$, evaluated for a given initial bunch with $z_{\min/\max}$, such that $f(R_{56}, T_{566}, U_{5666}, h_1, h_2, h_3; z_{\min/\max}) = 0$, with,

 $f(R_{56}, T_{566}, U_{5666}, h_1, h_2, h_3; z_{\min/\max}) = 1 + h_1 R_{56} + 2h_2 R_{56} z_{\min/\max} + 3h_3 R_{56} z_{\min/\max}^2 + 2T_{566} h_1^2 z_{\min/\max} + 6T_{566} h_1 h_2 z_{\min/\max}^2 + 3h_1^3 U_{5666} z_{\min/\max}^2.$

Considering a BC where the entrance bunch is characterized by h1, h2, and h3 (i.e. the first, second and third order chirp), for a given value of R56, the values of T566 and U5666 can be chose to ensure the working point is within the non-caustic region.

26/09/17

Using octupoles to alter U5666

The border between the caustic regions is defined by the set of variables, $(R_{56}, T_{566}, U_{5666}, h_1, h_2, h_3)$, evaluated for a given initial bunch with $z_{\min/\max}$, such that $f(R_{56}, T_{566}, U_{5666}, h_1, h_2, h_3; z_{\min/\max}) = 0$, with,

 $f(R_{56}, T_{566}, U_{5666}, h_1, h_2, h_3; z_{\min/\max}) = 1 + h_1 R_{56} + 2h_2 R_{56} z_{\min/\max} + 3h_3 R_{56} z_{\min/\max}^2 + 2T_{566} h_1^2 z_{\min/\max} + 6T_{566} h_1 h_2 z_{\min/\max}^2 + 3h_1^3 U_{5666} z_{\min/\max}^2.$

Two cases were investigated:1. Predominately S-band linac2. Predominately X-band linac

FEL, S-band linac simulations

Slice properties

Tessa Charles – NOCE2017

26/09/17

Avoiding caustics, X-band linac

Further optimisation

FEL, X-band linac

Dipole bending angle, $\theta = 5.25^{\circ}$ Octupole strength, K3 = 2061 m⁻³ Dipole bending angle, $\theta = 1.35^{\circ}$ Sextupole 1 strength, K2 = 11.03 m⁻²

26/09/17

FEL, X-band linac

26/09/17

Tessa Charles – NOCE2017

Microbunching – also a caustic phenomenon?

• A caustic expression can also be derived for microbunching. Each line shows where a current spike will be seen.

Microbunching is also a caustic phenomenon

Microbunching – with higher-order effects Australian Synchrotron Structure Australian S

• Including and varying higher-order effects we can see how the caustic lines change.

T566 = -30 mm, U5666 =0 mm (red)

T566 = U5666 = 0 mm (gray) U5666 = -2 m, T566 = 0 (red)

- Caustics can form in electron trajectories which are always associated with current spikes.
- Current horns from strong bunch compression can be avoided with higher-order magnetic elements.

I would like to thank:

- Rohan Dowd (Australian Synchrotron)
- David Paganin (Monash University)
- Andrea Latina (CERN)
- Mark Boland (Canadian Light Source)

Thank you

Back-up slides

26/09/17

Tessa Charles – NOCE2017

Figure 6.8: Electron trajectories (in s-z space) through a bunch compressor. (b) shows a close up of the trajectories through the fourth dipole (i.e. region outlined with a red box in (a)). Caustics can be seen forming at head and tail of the bunch in (b).

TABLE I: Beam properties at the end of the final linac section, for (a) Baseline layout, (b) Layout 1: which includes BC1 octupole magnet (Fig. 6a), (c) Layout 2 which includes BC2 sextupole magnet (Fig. 6b).

Parameter	Symbol	Units	Baseline	Layout 1	Layout 2
Bunch length	σ_z	$\mu \mathrm{m}$	6.65	6.75	6.68
Horizontal bunch size	σ_x	$\mu \mathrm{m}$	0.376	0.306	0.267
Vertical bunch size	σ_y	μm	0.161	0.162	0.163
Energy spread	$\sigma_{\Delta E/E}$	%	0.0371 (core)	0.0292	0.0281
Peak current	I_{peak}	kA	3.02 (core)	3.02	3.09
Total compression ratio	CR	-	121.38 ^a	119.6	120.8
Bunch charge	\mathbf{Q}	\mathbf{pC}	250	250	250
Electron energy	\mathbf{E}	${\rm GeV}$	6.16	6.16	6.16
Projected horizontal emittance	$\epsilon_{n,x}$	mm mrad	1.394	0.974	0.842
Mean horizontal slice emittance	$\epsilon_{s,n,x}$	mm mrad	0.386	0.392	0.377
Projected vertical emittance	$\epsilon_{n,y}$	mm mrad	0.274	0.273	0.274
Mean vertical slice emittance	$\epsilon_{s,n,y}$	mm mrad	0.255	0.249	0.246

^a Note the bending angles of BC2 were reduced by less than 0.01% to bring the compression ratio down to be in-line with Layout 1 and Layout 2.

